Detecting and Using Radiation in Security Application

Leticia Pibida, Ph.D.
leticia.pibida@nist.gov

Team members:
Fred Bateman, Paul Bergstrom, Heather Chen-Mayer, Jack Glover, Larry Hudson, Ronnie Minniti, Ron Tosh, Michael Unterweger, Peter Volkovitsky
Summary of NIST Efforts

• Testing of radiation detection instruments
 – Test design
 – Technical support during test execution
 – Data Analysis and Report

• Standard development
 – Consensus standards – ANSI/IEEE, IEC, ASTM
 – Technical capability standards – Government unique standards
 – Validation of standards

• Development of sources for testing

• Development of the Graduated Rad/Nuc Detector Evaluation and Reporting (GRaDER) Program
 – Develop components of the program – T&E protocols, NVLAP Handbook, review of testing labs capabilities, proficiency test, post-market surveillance
 – Review test results – provided test reports
Rad/Nuc Detector Standards Development

http://standards.ieee.org/getN42/

- **ANSI N42.32** (equivalent IEC 62401)

- **ANSI N42.33** (equivalent IEC 62533)

- **ANSI N42.34** (equivalent IEC 62327)
 - American National Standard Performance Criteria for Hand-held Instruments for the Detection and Identification of Radionuclides

- **ANSI N42.35** (equivalent IEC 62244)
Rad/Nuc Detector Standards Development

• ANSI N42.37 (training standards)
 – Training Requirements for Homeland Security Purposes
 Using Radiation Detection Instrumentation for Interdiction and Prevention

• ANSI N42.38 (equivalent IEC 62484)
 – Performance Criteria for Spectroscopy-Based Portal Monitors used for
 Homeland Security

• ANSI N42.39 (equivalent IEC 62534)
 – Performance Criteria for Neutron Detectors for Homeland Security

• ANSI N42.42 (applicable to all instrument standards)
 – Data format standard for radiation detectors used for Homeland Security

Information on ANSI N42.42: http://www.nist.gov/pml/div682/grp04/n42.cfm
Rad/Nuc Detector Standards Development

- **ANSI N42.43** (no IEC equivalent)
 - Standard for Mobile and Transportable Systems Including Cranes used for Homeland Security Applications

- **ANSI N42.48** (equivalent IEC 62618)
 - American National Standard Performance Requirements for Spectroscopic Personal Radiation Detectors (SPRDs) for Homeland Security

- **ANSI N42.49 A & B** (no IEC equivalent)
 - Performance Criteria for Personal Emergency Radiation Detectors (PERDs) for Exposure Control

- **ANSI N42.53** (equivalent IEC 62694)
 - Performance Criteria for Backpack Based Radiation Detector Systems Used for Homeland Security

UNCLASSIFIED
• **General tests:** display, weight, size, data format, alarms, user interface (depend on detector type)

• **Radiological tests:** exposure rate, background, false alarm, gamma and neutron response, (strongly depend on detector type)

• **Environmental tests:** temperature, humidity, sealing (similar for all type of detectors)

• **Mechanical tests:** mechanical shocks, vibration, drop test (strongly depend on detector type)

• **Electromagnetic tests:** external magnetic fields, radio frequency, conducted disturbances (burst and radio frequencies), surges and oscillatory waves, electrostatic discharges (similar for all type of detectors)
ITRAP+10 Testing Against Standards

Testing against IEC and ANSI standard:

- PRDs
- RIDS
- Gamma high sensitivity meters
- Neutron high sensitivity meters
- Backpacks
- Portal monitors – gross count and spectrometric
- Mobile systems
- SPRDs

Includes US and EU laboratories:

- JRC (Ispra)
- PNNL
- SRNL
- ORNL
Source Development and Calibration

- Produced, calibrated and supplied of gamma-ray and neutron sources to laboratories, for use in equipment testing against ANSI and IEC standards.

- Developed new 232Th (14 μCi), 232U (14 μCi - 100 μCi) and 226Ra (8 μCi) sources for use in testing against N42.38.

- Helped source manufacturers with design, calibration and development of new sources – Commercialized by Eckert and Ziegler (E&Z) - Provides private sector participation
Source Development for Maritime Testing

Develop new sources for use during testing (special geometry)

Sources are design to:
- Float
- Spherical symmetric emission
- Mimic 60Co irradiators
- Mimic 137Cs density gauges
- Surrogates for SNM

<table>
<thead>
<tr>
<th>Radionuclide</th>
<th>Emission Rate</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>57Co</td>
<td>$1.46 \times 10^6 \gamma/s$</td>
<td>5% for 122 keV, Equivalent to bare source</td>
</tr>
<tr>
<td>60Co</td>
<td>$10.18 \times 10^6 \gamma/s$</td>
<td>5% for 1332 keV, Equivalent to irradiator</td>
</tr>
<tr>
<td>133Ba</td>
<td>$7.15 \times 10^6 \gamma/s$</td>
<td>5% for 356 keV, Equivalent to bare source</td>
</tr>
<tr>
<td>137Cs</td>
<td>$34.2 \times 10^6 \gamma/s$</td>
<td>5% for 662 keV, Equivalent to density gauge</td>
</tr>
<tr>
<td>252Cf</td>
<td>$2 \times 10^4 n/s$</td>
<td>20%</td>
</tr>
</tbody>
</table>
NORM Measurements and Characterization

• Samples measured
 – Tiles
 – Cat Litter
 – Ice Melt
 – Roofing tiles
 – Hay
 – Coal
 – Granite

• Samples measured
 – Australian Zircon Sand
 – Diammonium phosphate (DAP)
 – ISG Pye
 – CEMEX type FC
 – Monocalcium phosphate (biofos)
X-Ray Screening/ Active Interrogation Standards
Development

- **ANSI N42.41** (no IEC equivalent)
 - Performance Criteria for Active Interrogation Systems used for Homeland Security

- **ANSI N42.44** (no IEC equivalent)
 - Performance and evaluation of checkpoint cabinet x-ray imaging security-screening systems

- **ANSI N42.45** (no IEC equivalent)
 - Evaluating the image quality of x-ray computed tomography security-screening systems

- **ANSI N42.46** (equivalent IEC 62523)
 - Measuring the performance of imagining x-ray and gamma-ray systems for cargo and vehicle security screening

- **ANSI N42.47** (equivalent IEC 62463/62709)
 - Measuring the performance of imagining x-ray and gamma-ray systems for security screening of humans

UNCLASSIFIED
Test Objects for Testing X-Ray Screening

Standard test objects, test methods, T&E protocols, and minimum performance requirements
High Energy X-Rays Dosimetry Standard

- Ionization chamber to measure AIR KERMA from systems with peak voltages between 6 MV and 10 MV
- Leakage currents stable $< 5 \times 10^{-15}$ A
- Operating voltage is optimized at 300 V
- Chamber response is linear with increasing x-ray fluence
- Charge-collection efficiencies are of the order of 99%
- Monte Carlo calculations for estimating wall correction (about 8%); etc.
- Testing at both NIST Clinac megavoltage x-ray source and 60Co beams

![Prototype brass-wall ion chamber to measure high-E beams (cargo)]
Results are based on a pass/fail criteria set by the standards.
Laboratories are accredited for each section in the standard

The handbook has an annex that includes a list of questions for the NVLAP assessors for laboratory on-site assessment.
Test Campaigns – DNDO/NIST

- Advance Spectroscopic Portal Monitors (ASP)
- Anole – RIDs, Backpacks, Mobile
- Bobcat – PRDs
- Crawdad – Maritime Baseline (lake)
- Dolphin – Maritime (open sea)
- Eland – Mobile systems
- Gryphon – Aerial systems
- PaxBag – Airport systems
- International General Aviation (IGA)
- Straddle Portal Monitors

UNCLASSIFIED
Thank you for your attention

Questions?